编译原理

本笔记基于上海交通大学 胡易坤老师 2024-2025 学年春季学期教学内容进行整理,部分图片来自胡老师的PPT,若有侵权请联系删除。

Quick Links

Quick Check

  • LL(1) Grammar
    • L: 从左到右扫描输入;L:最左派生;1:提前看一个输入符号
    • 无左递归和左因子
    • A → α | β表示两个不同的产生式,则FIRST(α)FIRST(β) 是互不相交的集合
      • 二者不会同时派生以a开头的字符串
      • 至多一个αβ可以派生空字符串
    • 如果ϵ ∈ FIRST(β),则FIRST(α)FOLLOW(A)是互不相交的集合
  • LL(1) Parsing
    • 提取左因子
    • 消除直接左递归
    • 计算FIRSTFOLLOW
    • 构造预测分析表(列为终结符,行为非终结符)
    • 从Start Symbol开始预测/或使用栈和输入缓冲区进行预测分析
      • 查表(最左侧非终结符,最左侧未匹配输入符号)作为派生的产生式进行派生
      • 若使用栈和输入缓冲区,则
        • 若栈顶符号为终结符且与输入符号匹配,则出栈并将输入指针后移
        • 若栈顶符号为非终结符,则查表(栈顶符号,输入指针对应符号)得到派生的产生式,将栈顶符号出栈并将产生式右侧符号逆序入栈
        • 直到栈为空,输入指针指向$,则接受输入
  • OG Grammar(算符文法)
    • 任意生成式不含两个相邻的非终结符
    • 不含空生成式
  • OPP Grammar(算符优先文法)
    • 首先满足OG Grammar的要求
    • 任意两个终结符号对(有序)之间一定满足唯一的优先级关系
  • OPP Parsing
    • 计算LEADINGTRAILING
    • 构造优先级关系表
    • 使用栈和输入缓冲区进行运算符优先解析/或使用优先级爬升法
      • 若栈顶终结符号优先级 <· / =· 输入符号优先级,则移进
      • 若栈顶终结符号优先级 >· 输入符号优先级,则归约
  • LR(0) Grammar
    • L: 从左到右扫描输入;R:最右派生,最左归约;0:提前看一个输入符号
    • 任一项集的状态转移不含归约-归约或移进-归约冲突
  • LR(0) Parsing
    • 扩展文法
    • 通过GOTOCLOSURE构造LR(0)项集族
    • 构造LR(0)分析表(列为输入符号,行为状态)
    • 使用栈和输入缓冲区进行LR(0)解析
      • 查表,(栈顶,输入符号)为s n,则移进并push状态n到栈顶,
      • 若为r m,则用第m条产生式进行归约,pop栈顶的符号数目等于产生式右侧符号数目,查(栈顶符号,产生式左侧符号)为n,则push状态n到栈顶
      • 若为ACCEPT,则接受输入
  • SLR(1) Grammar
    • 任一项集的状态转移不含归约-归约或移进-归约冲突
      • LR(0)项目集中存在归约-归约冲突时,两个FOLLOW集的交集为空
      • LR(0)项目集中存在移进-归约冲突时,移进的终结符号不在归约的FOLLOW集中
  • SLR(1) Parsing
    • 扩展文法、构造集族同LR(0)
    • 构造SLR(1)分析表时:
      • A → β 归约时, 只对FOLLOW(A)中的终结符进行归约
      • S → S 赋值ACCEPT时, 只对$接受
    • 使用栈和输入缓冲区进行SLR(1)解析
  • LR(1) Grammar
    • L: 从左到右扫描输入;R:最右派生,最左归约;1:提前看一个输入符号
    • LR(1)的项由两部分组成:LR(0)的项和一个lookahead符号
    • 任一项集的状态转移不含归约-归约或移进-归约冲突
      • 无归约-归约冲突:同一状态下如果有多个归约,则前瞻符号不相交
      • 无移进-归约冲突:同一状态下如果同时有移进和归约,则移进的终结符号不在归约的前瞻符号中
  • LR(1) Parsing
    • 扩展文法
    • 通过GOTOCLOSURE构造LR(1)项集族
    • 构造LR(1)分析表时:
      • [A → β⋅, a] 归约时, 只对a进行归约
      • [S → S⋅, $] 赋值ACCEPT时, 只对$接受
    • 使用栈和输入缓冲区进行LR(1)解析
  • LALR(1) Grammar
    • LA: LookAhead;L: 从左到右扫描输入;R:最右派生,最左归约;1:提前看一个输入符号
    • LALR(1)的项集族是LR(1)的项集族的同心集合并
    • 任一项集的状态转移不含归约-归约或移进-归约冲突
  • LALR(1) Parsing
    • 扩展文法、构造集族同LR(0)作为心
    • 对每个状态的初始项的心,用占位符#作为前瞻符号,通过闭包计算自发生成的前瞻符号和传递关系
    • 对于传递关系,保留每个状态的内核项,构造传播表
    • 根据传播表和自发生成的前瞻符号,通过若干轮传播得到每个心最终对应的前瞻符号,得到归约内核项的[心,前瞻符号(若干个)]对
    • 构造LALR(1)分析表,与LR(1)相同
    • 使用栈和输入缓冲区进行LALR(1)解析

Ch1 Intro

编译流程

  • 解释器 vs. 编译器 (Interpreter vs. Compiler)
    • 解释器方便错误诊断 (Error Diagnosis)
    • 编译器得到的代码更加高效

编译器

  • 前端:词法分析(Lexical Analysis)、语法分析(Syntax Analysis)、语义分析(Semantic Analysis)、中间代码生成(Intermediate Code Generation)
  • 后端:代码优化(Optimization)、目标代码生成(Code Generation)

词法分析:Lexical Analysis

  • Lexical Analysis: Scanning (词法分析:扫描)
    • Lexical Analyzer: Scanner (词法分析器:扫描器)
    • Recognize Words (Lexemes) -> Tokens & Symbol Table (识别单词(词素)-> 生成标记和符号表)
    • Token: <token-name, attribute-value (opt.)>
      • token-name: id, number, keywords, operators, etc. (标记名:标识符、数字、关键字、运算符等)
      • attribute-value: a pointer to the symbol table (属性值:指向符号表的指针)

语法分析:Syntax Analysis

  • Syntax Analysis: Parsing (语法分析:解析)
    • Syntax Analyzer: Parser (语法分析器:解析器)
    • Produce the Grammatical Structure (生成语法结构)
      • The Relationships among Tokens (标记之间的关系)
      • Tree-like Intermediate Representation (树状中间表示)
    • Parse Tree (解析树)
      • Parser generates the Parse Tree, from which produces the Syntax Tree (解析器生成解析树,从中生成语法树)
    • Syntax Tree: Simplified Parse Tree (语法树:简化的解析树)
      • Interior Node: Operation (内部节点:操作)
      • Children: Arguments of the Operation (子节点:操作的参数)

词法分析 vs. 语法分析

  • 做着相似的事情:处理字符串
  • 词法分析 (Scanning):拆分字符串成Lexemes,并抽象成Tokens
  • 语法分析 (Parsing):整理Tokens的逻辑关系

语义分析:Semantic Analysis

  • Semantic Analysis (语义分析)
    • computing additional info needed for compilation (计算编译所需的附加信息)
      • which is not regarded as syntax (这些信息不被视为语法)
    • checking source code semantic consistency with the language definition (检查源代码与语言定义的语义一致性)
      • Type Checking (类型检查)

中间代码生成:Intermediate Code Generation

  • Intermediate Code Generation (中间代码生成)
    • Intermediate Representations (IR), e.g., Syntax Tree, etc. (中间表示,例如语法树等)
    • Low-level or Machine-like IR (低级或类似机器的中间表示)
      • LLVM-IR (LLVM, Clang), Gimple (GCC), etc. (LLVM-IR(LLVM,Clang),Gimple(GCC)等)
      • Three-address Code, with at Most Three Operands per Instruction (三地址码,每条指令最多三个操作数)
      • Static Single Assignment (SSA) (静态单赋值)
        • Every variable is only assigned (defined) once and defined before used. (每个变量只能被赋值(定义)一次,并且在使用前必须定义。)

优化:Optimization

  • Optimization (优化)
    • Improve the IR for Better Target Code (改进中间表示以生成更好的目标代码)
    • Better: Faster, Smaller, Greener (更好:更快、更小、更环保)

目标代码生成:Target Code Generation

  • Target Code Generation (目标代码生成)
    • Instruction Selection (指令选择)
      • RISC vs. CISC
        • RISC: Reduced Instruction Set Computer (精简指令集计算机)
        • CISC: Complex Instruction Set Computer (复杂指令集计算机)
      • Intel Manual: > 6000 Pages (英特尔手册:超过6000页)
    • Register Allocation (寄存器分配)
      • Graph Coloring Problem (图着色问题)
    • Evaluation Order (计算顺序)
      • Arrange the Computation Order for Less Register Occupation (安排计算顺序以减少寄存器占用)
      • NPC (Non-Polynomial Complete) Problem (非多项式完全问题)

Ch2 Syntax Definition

文法的定义:Definition of Grammars

定义

  • Grammar: a Set of Rules to Describe a Language.
  • Language: a Sorted Set of Strings over some fixed Alphabet.
  • 关系:Grammar Abstracts the Language to Cover All Its Strings. (文法是对语言的抽象,覆盖了语言的所有字符串)
  • ∅: Empty Language (Set of Strings)
  • 𝜺: Empty String (Set of Symbols)

组成

  • Grammar G[S] = (VN, VT, P, S)
    • VT: A set of Terminal Symbols (终结符)
      • Atomic: 基本符号,不可再分
    • VN : A set of Non-terminals (非终结符)
      • A Non-terminal: a set of strings of Terminals
    • P: A set of Productions (生成式、规则)
      • A Non-terminal, an Arrow, a sequence of Terminals and/or Non-terminals
    • S: A Start Symbol (开始符)
      • A Non-terminal

推导:Derivations

定义

  • A Grammar derives strings by beginning with the Start Symbol and repeatedly replacing a Non-terminal with Terminals via its Productions. (文法通过从开始符开始,反复用生成式将非终结符替换为终结符来派生字符串)
    • 推导(Derivation):反复根据生成规则用终结符替换非终结符
    • 归约(Reduction):推导的反过程

语法分析(Syntax Analysis, Parsing)

  • given a sequence of Terminals, figure out Whether it can be Derived from the Grammar and How if possible. (给定一个终结符序列,判断它是否可以由文法推导而来,如果可以,推导过程是什么)
  • 一个语言可能有多个文法描述,而一个文法只会派生一个唯一语言

文法的二义性:Ambiguity

定义

  • 语法树(Parse Tree): A Graphical Representation of a Derivation without the Order of Applying Productions. (语法树是一个图形表示,表示了一个推导过程,但不考虑生成式应用的顺序)
  • 二义性(Ambiguity): When Parsing, given a sequence of Terminals, a Grammar is Ambiguous if there are more than one Parse Tree for the Derivation.(二义性是指一个文法可以产生多棵语法树) ### Fix the Grammar
  • Example:
    • stmt -> if expr then stmt | if expr then stmt else stmt | other
    • if E1 then if E2 then S1 else S2
  • Match each else with the closest unmatched then
    • the statement appearing between a then and an else must be “matched”
    • the interior statement must not end with an unmatched (open) then
  • Listing All Cases then Tidying Them Up
    • if expr then matched_stmt
    • if expr then open_stmt
    • if expr then matched_stmt else matched_stmt
    • if expr then matched_stmt else open_stmt
    • so that:
      • matched_stmt -> if expr then matched_stmt else matched_stmt | other
      • open_stmt -> if expr then matched_stmt | if expr then open_stmt | if expr then matched_stmt else open_stm
    • finally:
      • stmt -> matched_stmt | open_stmt
      • matched_stmt -> if expr then matched_stmt else matched_stmt | other
      • open_stmt -> if expr then stmt | if expr then matched_stmt else open_stmt

文法和语言的分类:Classes of Languages

  • 范围由 Type 0 到 Type 3 逐渐缩小

Ch3 Scanning

词法分析:Lexical Analysis

Token, Pattern, and Lexemes

  • The Analysis Partitions Input String into Substrings. (分析将输入字符串划分为子字符串。)
  • Token: <token-name, attribute-value(opt.)>
    • token-name: the role of lexical unit (词法单元的角色)
      • often refer to Token by its token-name
    • attribute-value: any info associated to the Token (与Token相关的任何信息)
      • Generally, it has only ONE value: a pointer to the Symbol Table (通常只有一个值:指向符号表的指针)
        • In practice, the value of a constant can be stored as the attribute. (在实践中,常量的值可以作为属性存储。)
          • constant: strings, numbers (常量:字符串、数字)
  • Pattern: description of the form lexemes of a token may (描述词法单元的形式)
    • regular expression: , ?, *, +, …
  • Lexeme: a sequence of characters matches a token’s pattern (与模式匹配的字符序列)
    • Token vs. Lexeme: Class vs. Instance in C++

Specification of Tokens

Strings and Languages

  • String: a finite sequence of Symbols from an Alphabet (字符串:来自字母表的有限符号序列)
  • Language: any countable set of Strings (语言:任何可数的字符串集合)
  • Terms for Parts of a String s (字符串s的部分术语):
    • prefix:前缀
      • any string obtained by removing zero or more symbols from the end of s
    • suffix:后缀
      • any string obtained by removing zero or more symbols from the beginning of s
    • substring:子串
      • any string obtained by removing any prefix or any suffix from s (去掉前缀或后缀)
    • subsequence:子序列
      • any string obtained by removing zero or more not necessarily consecutive position of s (不一定连续的位置)

Operations on Languages

  • Union: (并集)
    • L1 ∪ L2 = {x|x ∈ L1  or  x ∈ L2}
  • Concatenation: (连接)
    • L1L2 = {xy|x ∈ L1  and  y ∈ L2}
  • Kleene closure: (星闭包)
    • $L^* = \bigcup_{1=0}^\infty L^i \\= {𝜖} ∪ L ∪ L^2 ∪ L^3 ∪ ... \\= \{x | x = x_1x_2...x_n, n ≥ 0, xi ∈ L\}$
    • 𝜖 is the empty string
  • Positive closure: (正闭包)
    • $L^+ = \bigcup_{1=1}^\infty L^i \\= LL^* \\= \{x | x = x_1x_2...x_n, n ≥ 1, xi ∈ L\}$

Regular Expressions

定义

  • Regular Expression (Regex): a way to describe Patterns of Tokens of a programming language. (正则表达式:描述编程语言的词法单元模式的一种方式)
    • Each Regular Expression r denotes a Language L(r). (每个正则表达式r表示一个语言L(r)
      • Regular Language, Type-3 Language
    • The Regular Expressions are built recursively out of smaller ones, using the rules. (正则表达式是用规则递归构建的)

语法

  • BASIS (基础)
    • 𝜀 is a regular expression, and L(𝜀) = {𝜀}, the empty set. (空字符)
    • a is a symbol in a set Σ, then a is a regular expression, and L(a) = {a}. (集合中的字符)
  • INDUCTION (归纳):Suppose r and s are expressions denoting L(r) and L(s)
    • r|s : a regular expression denoting L(r) ∪ L(s)
    • rs : a regular expression denoting L(r)L(s)
    • r* : a regular expression denoting (L(r))*
    • (r) : a regular expression denoting L(r)
      • We can add additional brackets around expressions. (我们可以在表达式周围添加额外的括号。)
  • 定律

Regular Definitions

  • Regular Definition: a set of productions with non-terminals derived by regular expressions. (正则定义:一组通过正则表达式派生的非终结符的产生式)

Extensions of Regex

  • + : one or more instances
    • r* = r+ | 𝜖
    • r+ = rr* = r*r
  • ? : zero or one instance
    • r? = r | 𝜖
  • [  ] : character classes
    • [abc] = a | b | c
    • [a − z] = a | b | … | z

Regular Language / Grammar, and Regex

  • Regular Expression r denotes a Language L(r).
    • Regular Language is Type-3 Language (正则语言是类型3语言)
    • Regular Language is that denoted by Regular Expressions. (正则语言是由正则表达式表示的)
  • Regular Grammar is the grammar describes a Regular Language.
    • with the production form of A → α or A → αB

Recognition of Tokens

Input Buffer

Transition Diagrams

  • Transition Diagram = Nodes + Edges, a Flowchart (状态流程图 = 节点 + 边)
    • Nodes: states, conditions that could occur when looking for a lexeme that matches one pattern. (节点:状态)
      • States: Circles (状态:圆圈)
      • Start State: Arrowhead, Beginning of a Pattern (起始状态:箭头,开始)
      • End State(s): Double Circles, End of a Pattern (终止状态:双圆圈,结束)
    • Edge: actions, taken to transit from one State to Another. (边:动作)
      • labeled by a Symbol or a set of Symbols for matching (标记为符号或符号集以进行匹配)
    • Deterministic: at most ONE edge out of a given state with a given label. (确定性:在给定状态下,最多有一条边)
  • Example:
    • *(Retract): A Token has been accepted while another char has been read which must be unread. (回退:一个Token已经被接受,而另一个不应读取字符已经被读取,必须回退)

Reserved Words (保留字)

  • Keywords look like Identifiers.
    • if, then, …
  • Add reserved words into symbol table initially. (在符号表中添加保留字)
  • Create separate transition diagrams for each keyword. (为每个关键字创建单独的转换图)
    • thenextone

有穷自动机:Finite Automata

Finite Automata

  • What: an Abstract Machine that can be in exactly one of a Finite number of States at any given time. (有限自动机:在任何给定时间只能处于有限数量的状态之一的抽象机器)
    • Finite Automation = Finite-state Automation (FSA, plural: automata) (有限自动机 = 有限状态自动机)
      • Finite-state Machine (FSM), or simply State Machine (有限状态机,或简单地称为状态机)
    • changes from one state to another according to Inputs, called Transition (根据输入,从一个状态变化到另一个状态,称为转换)
  • Why: used as the Recognizer for Scanning, identifying Tokens (用于扫描的识别器,识别token)
  • How: answers “YES” or “NO” about each input String (如何:对每个输入字符串回答“是”或“否”)
    • determines whether the String is valid for the given Grammar (确定字符串是否符合给定的语法)

DFA vs. NFA

  • FA: Deterministic (DFA) or Non-deterministic (NFA)
  • DFA: have exactly/at most one action for each input symbol (每个输入符号有一个动作)
    • can be represented with a Transition Diagram
    • Recognition with DFA: Faster, may take More Space (识别DFA:更快,可能占用更多空间)
    • complex to represent Regex, but more Precise, widely used (复杂表示正则表达式,但更精确,广泛使用)
  • NFA: can have multiple actions for the same input symbol (同一输入符号可以有多个动作)
    • can be represented with a Transition Graph
    • Recognition with NFA: Slower, may take Less Space (识别NFA:较慢,可能占用更少的空间)
    • simply represents Regex, but less Precise (简单表示正则表达式,但不够精确)
  • Example:
  • Lexical Analysis Workflow with FA:
    • Regex -> NFA -> DFA
    • Regex -> DFA

Nondeterministic Finite Automata (NFA)

  • An NFA M = (S,𝜮,move,𝒔0,F) consists of:
    • S: a finite set of States (有限状态集)
    • 𝜮: the Input Alphabet, excluding 𝜖 (不包含𝜖的输入符号集合)
    • move, a Transition Function (转换函数)
      • move(State, Symbol) = set of Next States
      • move: 𝑆 × (Σ ∪ {𝜖}) ⟶ (𝑆)
    • s0 ∈ S, the Start State (or Initial State) (起始状态)
    • F ⊆ S, a set of Accepting States (or Final States) (终止状态)
  • An NFA accepts Input String s iff
    • there exists some path in the Transition Graph from the Start State to one Accepting State, (存在一条路径从起始状态到一个接受状态)
    • such that symbols along the path spell out s (路径上的符号拼写出s
  • Transition Tablesrows for States, columns for Input Symbols and 𝝐
    • Example:

Deterministic Finite Automata (DFA)

  • What: a Special Case of an NFA, where
    • there are no moves on symbol 𝜖, and
    • for each state s and input symbol a, there is Exactly ONE edge out of s labeled by a. (每个状态s和输入符号a,恰好有一条边出s标记为a)
      • COMPLETE: It defines from each state a transition for each input symbol. (完整:它定义了从每个状态到每个输入符号的转换)
        • Transition function is a total function.
      • Local Automation: DFA not necessarily complete (… At Most ONE edge …) (局部自动机:DFA不一定是完全图)
        • Transition function is a partial function.

Algorithm for Simulation

Conversion: NFA –> DFA

  • Subset Construction (子集构造)
    • removing 𝜖-transitions
    • combining multiple NFA’s states into ONE constructed DFA’s state (将多个NFA的状态组合成一个构造的DFA的状态,即:等势点合并)
  • Definitions:
    • 𝜖-closure(s):
      • s: some State
      • = Set of NFA States reached by state s via 𝜖-transitions, including s itself. (NFA中可以通过若干个空变换到达的状态的集合)
    • 𝜖-closure(T):
      • T: set of States
      • = s ∈ T 𝜖-closure(s)
    • move(T, a):
      • T: set of States
      • a: Input Symbol
      • = NFA’s States reached by 𝑠 ∈ 𝑇 on a.
  • Algorithm Subset Construction
    • Input: the start State s0 and the Transition Diagram of NFA N.
    • Output: Transition Graph of DFA Dtran
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      add 𝝐-closure(s0) into Dstates //将初始状态s0的𝝐闭包加入Dstates
      while (Dstates has unsearched state S) { //当Dstates有未搜索的状态S时
          tag S as searched //将S标记为已搜索
          foreach input symbol a { //对每个输入符号a
              U = 𝝐-closure(move(S, a)) //设U为S进行a动作后状态S'的𝝐闭包
              if (U is new to Dstates) { //如果U是Dstates中的新状态
                  add U into Dstates as unsearched //将U加入Dstates并标记为未搜索
              }
              Dtran(S, a) = U //将Dtran(S, a)设为U
          }
      }
    • 最后得到的Dtran是一个DFA的转换表,Dstates是DFA的状态集合。
  • Algorithm 𝜖-closure(T) Computation:
    • 上一步中U = 𝝐-closure(move(S, a))的实现逻辑:
    • Input: the State Set T
    • Output: 𝜖-closure(T)
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      push all states in T onto Stack //将T中的所有状态压入栈中
      while (Stack is not empty) { //当栈不为空时
          s = Stack.pop() //弹出栈顶元素s
          foreach (state u reached by s via 𝜖) { //对于每个s通过𝜖能达到的状态u
              if (u is not in 𝜖-closure(T)) { //如果u不在T的𝜖闭包中
                  add u into 𝜖-closure(T) // 将其加入T的𝜖闭包
                  Stack.push(u) //将u压入栈中
              }
          }
      }
  • Example:

Conversion: Regex –> NFA

  • McNaughton-Yamada-Thompson Algorithm
  • Regex’s Definition:
    • BASIS:
    • INDUCTION:
  • Example:

Workflow

  • The Workflow of Lexical Analyzer
    • Regex –> NFA Construction
    • NFA –> DFA Construction
    • Simulating DFA to Recognize Tokens
  • Convert Regex Directly into DFA: PASS
  • DFA Simplification: Minimizing the Number of States

DFA Simplification

  • What and Why:
    • no REDUNDANT states (无冗余状态)
      • REDUNDANCE: the states that NO accepted input string’s path passes through (没有路径到达终止状态的状态)
      • (in the transition graph)
    • no EQUIVALENT states (无等效状态)
      • EQUIVALENCE: states with the SAME side effects (具有相同副作用的状态)
      • (making the states indistinguishable)
    • Distinguish States via Input String (通过输入字符串区分状态)
      • State: s, t
      • String: x
      • x distinguishes s from t,
        • if one state can reach an accepting state via x, while the other cannot. (如果一个状态可以通过x到达终止状态,而另一个状态不能)
      • s is distinguishable from t,
        • if there is some string distinguishes them. (存在一些字符串可以区分它们)
      • Unify Indistinguishable States into One. (将不可区分的状态合并为一个)
  • How
    1. Start with the initial partition Π with two groups, the accepting and non-accepting states of the DFA. (将DFA的接受状态和非接受状态分为两个组)
    2. Let Πnew:=Π. Then, for each group G of Π: (初始时令Πnew=Π,然后对于每个组G)
      • For each input symbol a, states s, t in G are partitioned if they transit to different groups of Π via a; (对于每个输入符号a,如果状态s和t通过a转移到不同的组,则他们被划分为不同的组)
      • Replace G in Πnew by the new subgroups. (用新的子组替换G
    3. If Πnew ≠ Π, Π:  =Πnew and repeat Step 2, Step 4 otherwise. (如果Πnew ≠ Π,则令Π:  =Πnew并重复步骤2,否则跳到步骤4)
    4. Aggregate the transitions among groups. (将组之间的转换聚合)
    5. The resulting DFA is the minimized DFA. (得到的DFA是最小化的DFA)
  • Example:

Ch4 Parsing

词法分析:Lexical Analysis

Parser

  • What: Given Tokens, Parsing Verifies whether the Token Names Can Be Generated by the Grammar for the Source Language. (给定tokens,解析会验证token名称是否可以由源语言的语法生成)
  • Why: We expect the Parser
    • to report Syntax Errors (报告语法错误)
    • to recover from Errors to continue following processes. (从错误中恢复以继续后续过程)
  • How: Derivation or Reduction
    • Top-down and Bottom-up Parsing

Compiler Errors

  • Lexical Errors
    • The string does not match the pattern of any token. (字符串与任何token的模式不匹配)
  • Syntactic Errors
    • The string does not meet the requirements of the grammar. (字符串不符合语法要求)
  • Semantic Errors: Type Mismatching (语义错误:类型不匹配)

Error-Recovery Strategies

  • Panic-Mode Recovery
    • Discarding input symbols one at a time until meeting synchronizing tokens (丢弃输入符号,直到遇到同步tokens)
      • synchronizing tokens, e.g. “;”, “}”, etc., decided by designers
    • simple, but may cause more errors
  • Phrase-Level Recovery
    • Local Correction on Input, allowing the parser to continue (允许解析器继续)
      • e.g., “,” → “;”, delete/insert “;”
      • designers’ responsibility
    • helpless if error occurs before the point of detection
  • Error Productions
    • augmenting grammar with productions generating erroneous constructs (用产生错误构造的产生式扩充语法)
    • relying on designers
  • Global Correction
    • choosing a minimal sequence of changes for a globally least-cost correction (选择一系列最小的变化,以实现全局最低成本的修正)
    • costly, yardstick? should defined by designers

Context-Free Grammar (CFG)

Definition

  • A Context-Free Grammar consists of:
    • Terminals
    • Non-terminals
    • Start Symbol
    • Productions: A → α
      • Header / Left Side → Body / Right Side
        • Header: A Non-terminal
        • Body: zero or more Terminals or Non-terminals
      • VN → (VT|VN)*

Derivation

  • What: Beginning with the Start Symbol, replace a Non-terminal by the body of one of its Production. (从起始符号开始,用其产生式的右侧替换非终结符)

  • Why:

    • corresponding to Top-down Construction of a Parse Tree (对应于自顶向下构造解析树)
    • helpful for Bottom-up Parsing
  • How:

    • $$ : derive in one step
    • $ $ : derive in zero or more steps
      • $\alpha \overset{*}{\Rightarrow} \alpha$
      • if $\alpha \overset{*}{\Rightarrow} \beta$ and $\beta \overset{*}{\Rightarrow} \gamma$, then $\alpha \overset{*}{\Rightarrow} \gamma$
    • $ $ : derive in one or more steps
  • $\mathbf{S} \overset{*}{\Rightarrow} \alpha$

    • α is a Sentential Form of S. (α是S的一个句子形式)
    • α may contain Terminals, Non-terminals, or may be Empty.
    • Sentence: a Sentential Form without Non-terminals. (没有非终结符的句子形式)
  • What is a Language?

    • L(G): set of Sentences generated by the Grammar G
    • A string of terminals $ L(G) $ if and only if $ $ is a Sentence of $ G $ (or $ S $).
  • Example:

  • Leftmost Derivation: the Leftmost Non-terminal is always replaced at first (最左边的非终结符总是第一个被替换)

    • $ $
  • Rightmost Derivation: $ $

  • Parse Trees and Derivations

    • What: A Graphical Representation of a Derivation (派生的图形表示)
      • filtering out the order in which productions applied to replace non-terminals (过滤出应用于替换非终结符的产生式的顺序)
    • Example

Top-Down Parsing

  • What: Create the Parse Tree from Top to Bottom (从上到下创建解析树)
    • from root to leaves (从根到叶)
  • Why: for Parsing
  • How: Derive an Input String in the Leftmost Manner (以最左边的方式派生输入字符串)
    • consistent with string scanning (与字符串扫描一致)
    • Key: determine the production to be applied for a non-terminal (确定要应用于非终结符的产生式)
    • Recursive-Descent Parsing
      • require backtracking to find right production (需要回溯以找到正确的产生式)
      • general, but inefficient
    • Predictive Parsing
      • a special case of Recursive-Descent Parsing
      • no backtracking, choosing by looking ahead at input symbols (无需回溯,通过提前查看输入符号进行选择)

Recursive-Descent Parsing

1
2
3
4
5
6
7
8
9
10
void A() {
    // Choose an A-production, A --> X1 X2 ...Xk;
    for (i = 1 to k) {
        if (Xi is a non-terminal)
            call Xi();
        else if (Xi equals the current input symbol a)
            advance the input to the next symbol;
        else ... // an error has occurred
    }
}
  • Example:

Left Recursion (左递归)

  • What: The Grammar has a non-terminal A such that there exists a derivation $\mathbf{A} \overset{+}{\Rightarrow} \mathbf{A} \alpha$ (文法有一个非终结符A,使得存在一个派生$\mathbf{A} \overset{+}{\Rightarrow} \mathbf{A} \alpha$
  • Why: Recursive-Descent Parsing cannot handle Left Recursion. (递归下降解析无法处理左递归)
  • How: Transform the grammar to eliminate Left Recursion. (转换文法以消除左递归)
    • ==Immediate Elimination: A → Aα|β   ⇒ A → βA, A → αA|𝝐==
    • $ _1 | | _m  |  _1 | | _n   (_1 | | _n) , (_1 | | _m) | $
  • Example:

Left Recursion Elimination (消除左递归)

  • INPUT: Grammar G without Cycles or 𝝐-productions (无循环或𝝐产生式的文法)
    • Cycle: $\mathbf{A} \overset{+}{\Rightarrow} \mathbf{A}$
    • 𝝐-production: A → ϵ
  • OUTPUT: Equivalent Grammar without Left Recursions (没有左递归的等效文法)
  • Steps:
    1
    2
    3
    4
    5
    6
    7
    8
    supposing there are the Non-terminals with Order A1, A2..., An
    for (i from 1 to n) {
        for (j from 1 to i-1) {
            replace each AiAj𝛾 by Ai𝛿1𝛾 | 𝛿2𝛾 | ... | 𝛿𝑘𝛾, where:
                Aj𝛿1 | 𝛿2 | ... | 𝛿𝑘 are all current Aj-productions
        }
        eliminate the Immediate Left Recursion among the Ai-productions
    }
  • Example:

Predictive Parsing

  • What: recursive-descent parsers needing no backtracking (不需要回溯的递归下降解析器)
    • can be constructed for LL(k) grammar (可以为LL(k)文法构造)
      • L: scanning input from Left to right
      • L: producing a Leftmost derivation
      • k: using k input symbols of lookahead at each step to make decision
  • Why: a unique production to apply, or none to use (error)
  • Example: LL(1)
    • stmt → if (expr) stmt else stmt | while (expr) stmt | { stmt_list}
  • How: FIRST and FOLLOW
    • assist in choosing which production to apply, based on the next input symbol (根据下一个输入符号选择应用哪个产生式)

FIRST and FOLLOW

  • FIRST: the set of terminals that begin strings derived from a non-terminal or a string of grammar symbols. (从非终结符或语法符号字符串派生的字符串开始的终结符集合)
    • FIRST(𝜶): what the first symbol would be for 𝜶
    • 𝜶: string of grammar symbols
    • return: set of terminals that begin strings derived from 𝜶
      • first symbols of strings derived from 𝜶
    • HOW
      • if X is a terminal, then FIRST(X) = {X}
      • if X is a non-terminal, and X → Y1Y2Yk
        • add all non-𝝐 symbols of Y1 to FIRST(X)
        • add all non-𝝐 symbols of Y2 to FIRST(X), if ϵ ∈ FIRST(Y1)
        • ···
        • add all non-𝝐 symbols of Yk to FIRST(X), if ϵ ∈ FIRST(Y1) and ϵ ∈ FIRST(Y2) and ··· and ϵ ∈ FIRST(Yk1)
        • add 𝝐 to FIRST(X), if ϵ ∈ FIRST(Y1) and ϵ ∈ FIRST(Y2) and ··· and ϵ ∈ FIRST(Yk)
    • Example:
  • FOLLOW: the set of terminals that can appear immediately to the right of a non-terminal in some sentential form. (在某些句子形式中,可以出现在非终结符右侧的终结符集合)
    • FOLLOW(N): what is the next symbol of N
    • N: a non-terminal
    • return: set of terminals can appear immediately after N in a sentential form
    • HOW:
      • place $ in FOLLOW(S)
        • S: start symbol
        • $: input right end-marker
      • for each production M → αNβ
        • add all symbols in FIRST(β) to FOLLOW(N), except 𝝐
        • if ϵ ∈ FIRST(β), add all symbols in FOLLOW(M) to FOLLOW(N)
      • for each production M → αN
        • add all symbols in FOLLOW(M) to FOLLOW(N)
    • Example:

LL(1) Grammar

  • What: Any A → α | β Represents two Distinct Productions (A → α | β表示两个不同的产生式)
    • FIRST(α) and FIRST(β) are disjoint sets.(二者是互不相交的集合)
      • For no terminal a, do both α and β derive strings beginning with a. (二者不会同时派生以a开头的字符串)
      • At most one of α and β can derive the empty string. (至多一个αβ可以派生空字符串)
    • If ϵ ∈ FIRST(β), then FIRST(α) and FOLLOW(A) are disjoint sets. (如果ϵ ∈ FIRST(β),则FIRST(α)FOLLOW(A)是互不相交的集合)
  • Why: Proper Production is Selected by Looking ONLY at the Next Input Symbol. (通过仅查看下一个输入符号来选择适当的产生式)
  • How: By Parsing Table, a Two-Dimensional Array
    • M[A,a] = α, when deriving A, apply A → α if coming up with a. (当派生A时,如果出现a,则应用A → α

LL(1) Parsing

  • Predictive Parsing Table Construction
    • INPUT: Grammar G.
    • OUTPUT: Parsing Table M.
    • STEPS: For each production A → α:
      1. For each terminal a ∈ FIRST(α), add A → α to M[A,a].
      2. If ϵ ∈ FIRST(α), then for each terminal b ∈ FOLLOW(A), add A → α to M[A,b].
      3. If ϵ ∈ FIRST(α) and $ ∈ FOLLOW(A), add A → α to M[A,$].
    • Example:
  • Implementation
    • Stack-based Method, mimicking a leftmost derivation (基于栈的方法,模仿最左派生)

Left Factoring

  • When the decision is not clear, defer it until seeing enough symbols. (当决策不明确时,推迟到看到足够的符号为止)
  • Left-Factored:
    • A → 𝜶𝜷1|𝜶𝜷2  by  A → 𝜶A, A → 𝜷1|𝜷2
  • How:
    • For each non-terminal A, find the longest common prefix 𝜶 of its alternatives.
    • If 𝜶 is not empty, replace all of the A-productions
  • Example:
    • A → 𝜶𝜷1|𝜶𝜷2|...|𝜶𝜷n|𝜸    by    A → 𝜶A|𝜸, A → 𝜷1|𝜷2|...|𝜷n

Non-LL(1) Grammar

  • Non-LL(1) Grammars:
    • grammars with Left Recursion (左递归的文法)
    • grammars not Left Factored (未左因子化的文法)
    • grammars with Ambiguity (歧义文法)
  • Thus, before Predictive Parsing,
    • perform Left Factoring (左因子化)
    • eliminate Left Recursion (prerequisite of the elimination?) (消除左递归)
    • remove Ambiguity (消除歧义)

Bottom-Up Parsing

  • What: the construction of a parse tree beginning at the leaves and working up to the root (从叶子开始构建解析树,直到根)
  • Why: not all grammars can be made LL(1)
  • How: construct rightmost derivation in the reverse order
    • Reduction: “Reversed Derivation”(归约:反向派生)
      • from the string to the start symbol (从字符串到起始符号)
      • The body of a production is replaced by the non-terminal at its header. (用产生式的头部替换产生式的主体)
    • $S \overset{rm}{\Rightarrow} \gamma_0 \overset{rm}{\Rightarrow} \gamma_1 \overset{rm}{\Rightarrow} \dots \overset{rm}{\Rightarrow} \gamma_n \overset{rm}{\Rightarrow} \omega$
      • find the rightmost derivation in the reverse order: “leftmost reduction” (找到右侧派生的反向顺序:最左侧归约)
    • Left-to-Right, Rightmost Derivation in Reverse”: LR Parsing
  • Example
    • E ⇒ T ⇒ T * F ⇒ T * id ⇒ F * id ⇒ id * id

Handles

  • What: if $\mathbf{S} \overset{*}{\Rightarrow} \mathbf{\alpha A \omega} \overset{}{\Rightarrow} \mathbf{\alpha \beta \omega}$, then production Aβ in the position following α is a handle of αβω.
    • a substring that matches the body of a production, representing a step of reduction (与产生式的主体匹配的子字符串,表示归约的一步)
    • a pair of values: (production, position)
  • Why: handle pruning for bottom-up parsing (处理底向上解析的剪枝)
    • identify handles and reduce them to the appropriate leftmost non-terminals (识别句柄并将其归约到适当的最左非终结符)
  • How: by using a stack to keep track of the current position in the input string and the corresponding production rules (使用栈来跟踪输入字符串中的当前位置和相应的产生式规则)
  • Example

Shift-Reduce Parsing (移进归约解析)

  • How: Stack + Input Buffer
    • Stack: reduced Grammar Symbols
    • Input Buffer: rest of the String to be parsed
  • Actions
    • Shift: move the next symbol onto stack
    • Reduce: replace the handle on the top of stack
    • Accept: announce the success of parsing
    • Error: discover syntax errors, and call for recovery
  • Example:

Operator-Precedence Parsing (运算符优先解析)

  • What: a shift-reduce parser handling operator-precedence grammar (处理运算符优先文法的移位归约解析器)
    • operator-precedence grammar: a subset of LR(1) grammar (运算符优先文法:LR(1)文法的一个子集)
    • for each Production:
      • no 𝝐 in the body (主体中没有空字符)
      • no two consecutive non-terminals in the body (在主体中没有两个连续的非终结符)
  • Why: to handle expressions with operator precedence and associativity (处理具有运算符优先级和结合性的表达式)
  • How: find handles according precedence
    • Precedence (优先级)
      • a < ·b: a’s precedence is lower than b’s
      • a = ·b: … is equal to …
      • a > ·b: … is higher than …
    • Precedence Climbing Method (优先级爬升法)
      • scan the input from Left to Right until >· is encountered
      • then, scan backward until <· is encountered
      • that between <· and >· is the handle
    • Implementation with STACK (栈实现)
      • let a be the top Terminal on the STACK (栈顶终结符)
      • let b be the INPUT Symbol under processing (正在处理的输入符号)
      • if a < ·or = ·b, Shift
      • else if a > ·b, Reduce
  • Example:

OPP: Precedence Relation Construction (优先级关系构造)

Precedence Relation

  • If operator a has higher precedence than b
    • a > ·b
    • b < ·a
  • If a and b has equal precedence
    • if left-associative, then a > ·b and b > ·a
    • if right-associative, then a < ·b and b < ·a
  • For all operator a
    • a < ·id,  id > ·a
    • $ < ·a,  a > ·$
    • a < ·(,  ( < ·a,  a > ·),  ) > ·a
    • ( = ·)

LEADING and TRAILING

  • LEADING: the set of symbols that can appear at the beginning of a string derived from a non-terminal (可以出现在从非终结符派生的字符串开头的符号集合)
    • $\mathbf{LEADING(Q)} = \{\mathbf{Y}, \mathbf{N} \ | \ \mathbf{Q} \overset{+}{\Rightarrow} \mathbf{Y\delta} \ or\ \mathbf{Q} \overset{+}{\Rightarrow} \mathbf{N Y \delta}, \mathbf{N} \in \mathbf{V_n}, \mathbf{Y} \in \mathbf{V_t}\}$
    • for Q → Yδ or Q → NYδ, we have:
      • Y, N ∈ LEADING(Q)
      • LEADING(N) ⊆ LEADING(Q)
  • TRAILING: the set of symbols that can appear at the end of a string derived from a non-terminal (可以出现在从非终结符派生的字符串末尾的符号集合)
    • $\mathbf{TRAILING(P)} = \{\mathbf{X}, \mathbf{N} \ | \ \mathbf{P} \overset{+}{\Rightarrow} \mu \mathbf{X} \ or \ \mathbf{P} \overset{+}{\Rightarrow} \mu \mathbf{X} \mathbf{N}, \mathbf{N} \in \mathbf{V_n}, \mathbf{X} \in \mathbf{V_t}\}$
    • for P → μX or P → μXN, we have:
      • X, N ∈ TRAILING(P)
      • TRAILING(N) ⊆ TRAILING(P)
  • Example:

Constructing Precedence Relations

  • X = ·Y
    • if there is A → αXYβ, where X, Y ∈ V, α, β ∈ V*
    • or, there is A → αXNYβ, where N ∈ Vn ∪ {ϵ}, X, Y ∈ Vt
      • adjacent symbols have equal precedence (相邻符号具有相等的优先级)
        • at least one of them is a terminal (至少有一个是终结符)
      • e.g., E + T, T * F, E+ = T
  • X < ·Y
    • if there is A → αXQβ, and $\mathbf{Q} \overset{+}{\Rightarrow} \mathbf{Y \delta}$, where X, Y ∈ V, Q ∈ Vn, α, β, δ ∈ V*
    • or, there is A → αXQβ, and $\mathbf{Q} \overset{+}{\Rightarrow} \mathbf{N Y \delta}$, where N ∈ Vn ∪ {ϵ}, X, Y ∈ Vt
      • $\mathbf{LEADING(Q)} = \{\mathbf{Y}, \mathbf{N} \ | \ \mathbf{Q} \overset{+}{\Rightarrow} \mathbf{Y\delta} \ or\ \mathbf{Q} \overset{+}{\Rightarrow} \mathbf{N Y \delta}\}$
        • for A → αXQβ, we have X <· Symbols in LEADING(Q)
  • X > ·Y
    • if there is A → αPYβ, and $\mathbf{P} \overset{+}{\Rightarrow} \mu \mathbf{X}$, where X, Y ∈ V, P ∈ Vn, α, β, μ ∈ V*
    • or, there is A → αPYβ, and $\mathbf{P} \overset{+}{\Rightarrow} \mu \mathbf{X} \mathbf{N}$, where N ∈ Vn ∪ {ϵ}, P ∈ Vn, X, Y ∈ VT
    • $\mathbf{TRAILING(P)} = \{\mathbf{X}, \mathbf{N} \ | \ \mathbf{P} \overset{+}{\Rightarrow} \mu \mathbf{X} \ \text{or} \ \mathbf{P} \overset{+}{\Rightarrow} \mu \mathbf{X} \mathbf{N}\}$
      • for A → αPYβ, we have Symbols in TRAILING(P) > ·Y

Precedence Table

  • Steps
    • for each production A → X1X2Xk:
      • for each X
        • if Xi ∈ Vt and Xi+1 ∈ Vt, then Xi = ·Xi+1
        • if Xi ∈ Vt and Xi+2 ∈ Vt and Xi+1 ∈ Vn, then Xi = ·Xi+2
        • if Xi ∈ Vt and Xi+1 ∈ Vn, then Xi < ·LEADING(Xi+1)
        • if Xi ∈ Vn and Xi+1 ∈ Vt, then Xi = ·Xi+1 and TRAILING(Xi) > ·Xi+1
    • for the Start Symbol S:
      • $ < ·LEADING(S)
      • TRAILING(S) > ·$
  • Example:

OPP: Some More

  • Unary Minus vs. Binary Minus (一元负号与二元负号)
  • Leave It to Scanners (留给扫描器)
    • return two different tokens for the two (返回两个不同的tokens)
    • lookahead is required (需要向前看)
  • OPPs are not used often in practice (运算符优先级在实践中不常用)
    • limited scenarios and applications (有限的场景和应用)
    • but, simple -> part of a complex parsing system (但简单,是复杂解析系统的一部分)

LR Parsing

  • What:
    • left-to-right scanning
    • rightmost derivation in reverse
  • Why
    • can recognize virtually all programming languages of context-free grammars (几乎可以识别所有上下文无关文法的编程语言)
    • is the most general non-backtracking shift-reduce parsing method known (已知的最通用的非回溯移位归约解析方法)
      • yet is still efficient (仍然高效)
    • can detect a syntax error as soon as possible (尽快检测语法错误)
    • is a proper superset of the predictive parsing (是预测解析的适当超集)

LR(0) Parsing

Items and the LR(0) Automaton

  • Problem: when to shift and when to reduce?
    • how to decide whether that on the top of the stack is a handle? (如何判断栈顶的句柄?)
  • LR(0) Items: a production with a dot at some position in its body (LR(0) 项目:在其主体的某个位置有一个点的产生式)
    • prefixes of a valid production, indicating how much we have seen at the point (有效产生式的前缀,指示我们在该点上已经看到多少)
    • e.g. A → XYZ yields four items(例如A → XYZ产生四个项):
      • A → ⋅XYZ: hope to see XYZ next on the input
      • A → X ⋅ YZ: hope to see YZ next on the input
      • A → XY ⋅ Z: hope to see Z next on the input
      • A → XYZ: hope to see nothing next on the input
    • kind of state + transition → automaton
  • Kernel and Non-Kernel Items
    • Kernel Items: the Initial Item + those whose dots are not at the left
    • Non-Kernel Items: Otherwise
  • LR(0) Automaton: CLOSURE + GOTO
    • CLOSURE: set of Items (项集的闭包)
    • GOTO: the Transition Function (转换函数)

CLOSURE and GOTO

  • CLOSURE(I):
    • I: a set of Items for a grammar G(文法G的项集)
    • construct by two rules:
      1. every Item in I is added in to CLOSURE(I)I中的每个项目都添加到CLOSURE(I)中)
      2. if A → α ⋅ Bβ is in CLOSURE(I) and B → γ is a production of G, then add B → ⋅γ to CLOSURE(I) (如果A → α ⋅ BβCLOSURE(I)中,并且B → γG的一个产生式,则将B → ⋅γ添加到CLOSURE(I)中)
    • Example:
  • GOTO(I,X):
    • I: a set of Items for a grammar G (文法G的项集)
    • X: a grammar symbol (文法符号)
    • the closure of the set of items [A → αX ⋅ β] such that [A → α ⋅ Xβ] is in IGOTO(I,X)I中所有形如[A → α ⋅ Xβ]的项所对应的项[A → αX ⋅ β]的集合的闭包)
      • the transition from the state for I under input X (在输入X下,I的状态转换)
    • construct by
      1. for each Item A → α ⋅ Xβ in I
      2. then every Item in CLOSURE(AαXβ) is added to GOTO(I,X)
    • Example:

Automaton Construction

  • INPUT: a grammar G
  • OUTPUT: a LR(0) automaton
  • Construction:
    1. augment G to G by adding a new start symbol S and production S → S (通过添加新的起始符号S和产生式S → S扩展文法GG
    2. C:= {CLOSURE(SS)} (先求CLOSURE(SS),作为闭包的集合C中的第一个闭包)
    3. repeat:
      • for each Item I in C and each grammar symbol X in G (对C中每个项目IG中的每个文法符号X
        • if GOTO(I,X) is not empty and not in C (如果GOTO(I,X)不为空且不在C中,注意GOTO(I,X)是项集I在输入符号X下的转换的闭包)
          • add GOTO(I,X) to C
    4. until no new Items are added to C
  • Example:

Parsing Table Construction

  • LR(0) Parsing Table 𝕋:
    • Rows: states
    • Columns: grammar symbols
      • terminals for SHIFT and REDUCE actions
      • non-terminals for GOTO actions
    • Construction: each edge X: (sm, sn) (对于每条边X(sm, sn)为其起始和终止状态,X为文法符号)
      • if X is a terminal a, then 𝕋[sm, a] = SHIFT n (记作s n)
      • if X is a non-terminal A, then 𝕋[sm, A] = GOTO n (记作n)
      • if A → β is in sm, then for each terminal a, 𝕋[sm, a] = REDUCE A → β (记作r n,其中n是产生式的编号,用罗马数字表示)
      • if S → S is in sm, then for each terminal a, 𝕋[sm, a] = ACCEPT (记作a/acc)
  • Example: > 注:在上面的例子中,状态1、2、9均存在移进-归约冲突,因此不属于LR(0)文法。

Alogrithm and Implementation (算法与实现)

  • INPUT: an input string ω and an LR-parsing table 𝕋 for a grammar G

  • OUTPUT: if ω ∈ L(G), the reduction steps of a bottom-up parse for ω

  • STEPS:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    let a be the first symbol of 𝜔$ //设a是输入字符串𝜔$的第一个符号
    push state 0 onto the stack //将状态0推入栈中
    while (1) {
        let s be the state on top of the stack //设s是栈顶的状态
        if (ACTION[s, a] = shift t) { //如果ACTION[s, a] = shift t
            push t onto the stack //将t推入栈中
            let a be the next input symbol //设a是下一个输入符号
        }
        else if (ACTION[s, a] = reduce A→𝛽) { //如果ACTION[s, a] = reduce A→𝛽
            pop |𝛽| symbols off the stack //从栈中弹出|𝛽|(𝛽包含的符号数)个状态
            let t be the top of the stack now //设t是栈顶的状态
            push GOTO[t, A] onto the stack //将GOTO[t, A]推入栈中
        }
        else if (ACTION[s, a] = accept) break //如果ACTION[s, a] = accept,则结束
        else call error-handling routine
    }

  • Example:

LR(0) Conflicts

  • Reduce-Reduce Conflicts:
    • state has two reduce items
    • e.g. A → α and B → β
  • Shift-Reduce Conflicts:
    • state has a reduce item and a shift item
    • e.g. A → α ⋅ kγ and B → β
  • To avoid conflicts: SLR(1) Parsing

SLR(1) Parsing

Parsing Table Construction

  • LR(0) Parsing Table 𝕋 SLR(1) Parsing Table 𝕋
    • Rows: states
    • Columns: grammar symbols
      • terminals for SHIFT and REDUCE actions
      • non-terminals for GOTO actions
    • Construction: each edge X: (sm, sn)
      • if X is a terminal a, then 𝕋[sm, a] = SHIFT n
      • if X is a non-terminal A, then 𝕋[sm, A] = GOTO n
      • if A → β is in sm, then for each terminal a ∈ FOLLOW(A), 𝕋[sm, a] = REDUCE A → β (只对FOLLOW(A)中的终结符进行归约)
      • if S → S is in sm, then 𝕋[sm, $] = ACCEPT (只对$进行归约)
  • Example:

SLR(1) Conflicts

  • Reduce-Reduce Conflicts:
    • state has two reduce items
    • e.g. A → α and B → β
      • if FOLLOW(A) ∩ FOLLOW(B) = ∅, safe for SLR(1) (如果FOLLOW(A) ∩ FOLLOW(B) = ∅,则SLR(1)安全)
  • Shift-Reduce Conflicts:
    • state has a reduce item and a shift item
    • e.g. A → α ⋅ kγ and B → β
      • if k ∉ FOLLOW(B), safe for SLR(1) (如果k ∉ FOLLOW(B),则SLR(1)安全)

LR(1) Parsing

  • How: check the immediate following symbols of non-terminals for reduction (检查非终结符的直接后续符号以进行归约)
  • LR(1) Item = [LR(0) Item, Following Symbol]
    • e.g. [A → XY ⋅ Z, a]
    • where a is the following terminal symbol of AaA的后续终结符)
    • when Z is not empty, the same as LR(0) Item (当Z不为空时,与LR(0)项相同)
    • otherwise, A → XY ⋅ Z is applied only when the next input symbol is a (否则,只有在下一个输入符号为a时才应用A → XY ⋅ Z
      • instead of SLR(1)’s ALL A’s following symbols, let along LR(0)’s ALL terminal symbols (而不是SLR(1)的所有A的后续符号,甚至LR(0)的所有终结符)

LR(1)’s CLOSURE and GOTO

  • LR(1)’s CLOSURE(I)
    • every Item in I is added in to CLOSURE(I)
    • repeat:
      • if [A → α ⋅ Bβ, a] is in CLOSURE(I) and B → γ is a production of G, then for each terminal b in FIRST(βa), add [B → ⋅γ, b] into CLOSURE(I)
      • until no more new Items can be added into CLOSURE(I)
    • only reduce B when it is followed by that in FIRST(βa) (仅在后面跟着FIRST(βa)中的项时才归约B
  • LR(1)’s GOTO(I,B)
    • if [A → α ⋅ Bβ, a] in I
    • then every Item in CLOSURE({[AαBβ,a]}) is in GOTO(I,B)
      • GOTO(I,B) ⊇ CLOSURE({[AαBβ,a]})
      • Those of Kernel Items inherited from the previous state (从前一个状态继承的内核项)
  • Example:

Automaton Construction

  • INPUT: a grammar G
  • OUTPUT: a LR(1) automaton
  • Construction:
    1. augment G to G by adding a new start symbol S and production S → S (扩展文法)
    2. C:= {CLOSURE([SS,$])} (初始化项集C)
    3. repeat:
      • for each Item I in C and each grammar symbol X in G
        • if GOTO(I,X) is not empty and not in C
          • add GOTO(I,X) to C
    4. until no new Items are added to C
  • Example:
    1. Example:
    2. Exercise:

Parsing Table Construction

  • LR(1) Parsing Table 𝕋:
    • Rows: states
    • Columns: grammar symbols
      • terminals for SHIFT and REDUCE actions
      • non-terminals for GOTO actions
    • Construction: each edge X: (sm, sn)
      • if X is a terminal a, then 𝕋[sm, a] = SHIFT n
      • if X is a non-terminal A, then 𝕋[sm, A] = GOTO n
      • if [A → β⋅, a] (the kernel) is in sm, then 𝕋[sm, a] = REDUCE A → β
      • if [S → S⋅, $] is in sm, then 𝕋[sm, $] = ACCEPT
  • Example: > 注:上表中[11, id]应为s12,即𝕋[11, id] = s12

LALR(1) Parsing

  • What: Look Ahead LR(1)
  • Why: smaller parsing table than LR(1) for practice(比LR(1)小的解析表)
    • equal to SLR(1) in state number (与SLR(1)状态数相等)
      • e.g. In C, serveral hundred for SLR(1), serverals of thousands for LR(1)
    • more powerful than SLR(1) in processing more grammars (比SLR(1)更强大,能处理更多文法)
  • How: combine Items with the same Production Set in LR(1) (将LR(1)中具有相同产生式集的项(同心集)组合在一起)
    • e.g. [A → α⋅, a] and [A → α⋅, b] are combined into one state
  • Compared to LR(1):

Automaton Construction

  • INPUT: a grammar G
  • OUTPUT: a LALR(1) automaton
  • Construction:
    1. Construct LR(0) items as LALR(1) items’ cores for the grammar G,then remove the non-kernel items (为文法G构造LR(0)项作为LALR(1)项的核心,然后删除非核心项)
    2. For each kernal items K in Ii and each grammar symbol X in G, calculate the lookahead symbols’ INIT and PROPAGATION. (对于每个项集Ii中的核心项K和文法符号X,计算前瞻符号的初始值和传播)
      • For each item (A → α ⋅ β) in K
        • J := {CLOSURE([Aαβ,#])} (初始化J
        • if [BγXδ,a] in J and a#, then BγXδ in GOTO(Ii,X) has a SELF-generated lookahead symbol aJ中的项若出现不为#的前瞻符号,则它是自发生成的)
        • if [BγXδ,#] in J, then lookahead symbols are propagated from Aαβ to BγXδ in GOTO(Ii,X). (J中的项若出现#的前瞻符号,则该项会传播前瞻符号)
      • Specifically, $ in [SS,$] is SELF-generated.
    3. Construct the FROMTO table base on GOTO for the kernel items to show the propagation of lookahead symbols (为核心项构建FROMTO表,以显示前瞻符号的传播)
      • in step 2, we calculate propagated relationships.
    4. Propagate the lookahead symbols according to the FROMTO relationships until the fixed point achieved (根据FROMTO关系传播前瞻符号,直到达到不变点)
      • in step 2, we calculate self-generated lookahead symbols.
  • Example: > 注:上右表中,前瞻符号在传播时,每一行的前瞻符号可以向右填满右侧列,最右一列是最终结果

Parsing Table Construction

  • the same as LR(1) method
  • LALR(1) Parsing Table 𝕋:
    • Rows: states
    • Columns: grammar symbols
      • terminals for SHIFT and REDUCE actions
      • non-terminals for GOTO actions
    • Construction: each edge X: (sm, sn)
      • if X is a terminal a, then 𝕋[sm, a] = SHIFT n
      • if X is a non-terminal A, then 𝕋[sm, A] = GOTO n
      • if [A → β⋅, a] (the kernel) is in sm, then 𝕋[sm, a] = REDUCE A → β
      • if [S → S⋅, $] is in sm, then 𝕋[sm, $] = ACCEPT
  • Example:

Capabilities vs. Conflicts

  • LALR never introduces new SHIFT-REDUCE conflicts:
    • SHIFT does not depend on lookaheads
  • Example:

Summary

  • LR(0), SLR(1), LR(1), LALR(1)
    • all working in SHIFT-REDUCE mode
    • only different in Parsing Tables
  • Parsing Tables - Capabilities
    • LR(0) < SLR(1) < LALR(1) < LR(1)
    • LR(0): Items
    • SLR(1): Items with FOLLOW
    • LALR(1): Items Combined from SLR(1) and LR(1)
    • LR(1): Items with Subset of FOLLOW

Using Ambiguous Grammars

  • In Theory: grammar for LR parsing tables should be unambiguous (在理论上:LR解析表的文法应该是无歧义的)
  • For ambiguous grammars:
    • there will be conflicts
    • add new information/restrictions to resolve ambiguity (添加新信息/限制以解决歧义)
      • precedence, associativity, etc.
      • get LR tables without conflicts
  • Why embracing ambiguous grammars?
    • some are much natural, the unambiguous one can be very complex (有些是非常自然的,无歧义的可能非常复杂)
    • isolate common syntactic constructs for special-case optimizations (隔离常见的语法结构以进行特殊情况优化)
  • Example:

Summary


编译原理
https://youyeyejie.github.io/posts/编译原理/
作者
youyeyejie
发布于
2025年6月9日
更新于
2025年6月24日